Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430523

ABSTRACT

Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and IL-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors and mature B cells, including plasma cells in the bone marrow. We found that IFNγ is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.

2.
Front Immunol ; 15: 1353336, 2024.
Article in English | MEDLINE | ID: mdl-38533502

ABSTRACT

5,6-dimethylxanthenone-4-acetic acid (DMXAA) is a mouse-selective stimulator of interferon gene (STING) agonist exerting STING-dependent anti-tumor activity. Although DMXAA cannot fully activate human STING, DMXAA reached phase III in lung cancer clinical trials. How DMXAA is effective against human lung cancer is completely unknown. Here, we show that DMXAA is a partial STING agonist interfering with agonistic STING activation, which may explain its partial anti-tumor effect observed in humans, as STING was reported to be pro-tumorigenic for lung cancer cells with low antigenicity. Furthermore, we developed a DMXAA derivative-3-hydroxy-5-(4-hydroxybenzyl)-4-methyl-9H-xanthen-9-one (HHMX)-that can potently antagonize STING-mediated immune responses both in humans and mice. Notably, HHMX suppressed aberrant responses induced by STING gain-of-function mutations causing STING-associated vasculopathy with onset in infancy (SAVI) in in vitro experiments. Furthermore, HHMX treatment suppressed aberrant STING pathway activity in peripheral blood mononuclear cells from SAVI patients. Lastly, HHMX showed a potent therapeutic effect in SAVI mouse model by mitigating disease progression. Thus, HHMX offers therapeutic potential for STING-associated autoinflammatory diseases.


Subject(s)
Lung Neoplasms , Membrane Proteins , Xanthones , Humans , Mice , Animals , Membrane Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Lung/metabolism
3.
Cell Stem Cell ; 30(7): 987-1000.e8, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37385251

ABSTRACT

Gene editing using engineered nucleases frequently produces unintended genetic lesions in hematopoietic stem cells (HSCs). Gene-edited HSC cultures thus contain heterogeneous populations, the majority of which either do not carry the desired edit or harbor unwanted mutations. In consequence, transplanting edited HSCs carries the risks of suboptimal efficiency and of unwanted mutations in the graft. Here, we present an approach for expanding gene-edited HSCs at clonal density, allowing for genetic profiling of individual clones before transplantation. We achieved this by developing a defined, polymer-based expansion system and identifying long-term expanding clones within the CD201+CD150+CD48-c-Kit+Sca-1+Lin- population of precultured HSCs. Using the Prkdcscid immunodeficiency model, we demonstrate that we can expand and profile edited HSC clones to check for desired and unintended modifications, including large deletions. Transplantation of Prkdc-corrected HSCs rescued the immunodeficient phenotype. Our ex vivo manipulation platform establishes a paradigm to control genetic heterogeneity in HSC gene editing and therapy.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Genetic Heterogeneity , Hematopoietic Stem Cells , Phenotype , Clone Cells
4.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518217

ABSTRACT

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.


Subject(s)
I-kappa B Kinase/genetics , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Animals , Cell Line , Female , Humans , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/genetics
5.
Int Immunol ; 33(11): 587-594, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34455438

ABSTRACT

Cerebral malaria (CM) is a life-threatening complication of the malaria disease caused by Plasmodium falciparum infection and is responsible for the death of half a million people annually. The molecular pathogenesis underlying CM in humans is not completely understood, although sequestration of infected erythrocytes in cerebral microvessels is thought to play a major role. In contrast, experimental cerebral malaria (ECM) models in mice have been thought to be distinct from human CM, and are mainly caused by inflammatory mediators. Here, to understand the spatial distribution and the potential sequestration of parasites in the whole-brain microvessels during a mouse model of ECM, we utilized the new tissue-clearing method CUBIC (Clear, Unobstructed, Brain/Body Imaging Cocktails and Computational analysis) with light-sheet fluorescent microscopy (LSFM), and reconstructed images in three dimensions (3D). We demonstrated significantly greater accumulation of Plasmodium berghei ANKA (PbANKA) parasites in the olfactory bulb (OB) of mice, compared with the other parts of the brain, including the cerebral cortex, cerebellum and brainstem. Furthermore, we show that PbANKA parasites preferentially accumulate in the brainstem when the OB is surgically removed. This study therefore not only highlights a successful application of CUBIC tissue-clearing technology to visualize the whole brain and its microvessels during ECM, but it also shows CUBIC's future potential for visualizing pathological events in the whole ECM brain at the cellular level, an achievement that would greatly advance our understanding of human cerebral malaria.


Subject(s)
Brain/pathology , Malaria, Cerebral/pathology , Animals , Brain/immunology , Brain/parasitology , Disease Models, Animal , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Mice , Mice, Inbred C57BL , Plasmodium berghei/immunology
6.
Eur J Immunol ; 49(9): 1433-1440, 2019 09.
Article in English | MEDLINE | ID: mdl-31087643

ABSTRACT

Adjuvants improve the potency of vaccines, but the modes of action (MOAs) of most adjuvants are largely unknown. TLR-dependent and -independent innate immune signaling through the adaptor molecule MyD88 has been shown to be pivotal to the effects of most adjuvants; however, MyD88's involvement in the TLR-independent MOAs of adjuvants is poorly understood. Here, using the T-dependent antigen NIPOVA and a unique particulate adjuvant called synthetic hemozoin (sHZ), we show that MyD88 is required for early GC formation and enhanced antibody class-switch recombination (CSR) in mice. Using cell-type-specific MyD88 KO mice, we found that IgG2c class switching, but not IgG1 class switching, was controlled by B cell-intrinsic MyD88 signaling. Notably, IFN-γ produced by various cells including T cells, NK cells, and dendritic cells was the primary cytokine for IgG2c CSR and B-cell intrinsic MyD88 is required for IFN-γ production. Moreover, IFN-γ receptor (IFNγR) deficiency abolished sHZ-induced IgG2c production, while recombinant IFN-γ administration successfully rescued IgG2c CSR impairment in mice lacking B-cell intrinsic MyD88. Together, our results show that B cell-intrinsic MyD88 signaling is involved in the MOA of certain particulate adjuvants and this may enhance our specific understanding of how adjuvants and vaccines work.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin Class Switching/immunology , Immunoglobulin G/immunology , Interferon-gamma/immunology , Myeloid Differentiation Factor 88/immunology , Signal Transduction/immunology , Adjuvants, Immunologic/pharmacology , Animals , Dendritic Cells/immunology , Killer Cells, Natural/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes/immunology
7.
Nat Rev Immunol ; 18(4): 266-278, 2018 04.
Article in English | MEDLINE | ID: mdl-29332936

ABSTRACT

Systemic inflammation mediated by Plasmodium parasites is central to malaria disease and its complications. Plasmodium parasites reside in erythrocytes and can theoretically reach all host tissues via the circulation. However, actual interactions between parasitized erythrocytes and host tissues, along with the consequent damage and pathological changes, are limited locally to specific tissue sites. Such tissue specificity of the parasite can alter the outcome of malaria disease, determining whether acute or chronic complications occur. Here, we give an overview of the recent progress that has been made in understanding tissue-specific immunopathology during Plasmodium infection. As knowledge on tissue-specific host-parasite interactions accumulates, better treatment modalities and targets may emerge for intervention in malaria disease.


Subject(s)
Malaria/immunology , Malaria/pathology , Animals , Blood Vessels/immunology , Blood Vessels/parasitology , Blood Vessels/pathology , Bone and Bones/immunology , Bone and Bones/parasitology , Bone and Bones/pathology , Brain/immunology , Brain/parasitology , Brain/pathology , Digestive System/immunology , Digestive System/parasitology , Digestive System/pathology , Erythrocytes/immunology , Erythrocytes/parasitology , Erythrocytes/pathology , Host-Parasite Interactions/immunology , Humans , Lymphatic System/immunology , Lymphatic System/parasitology , Lymphatic System/pathology , Malaria/parasitology , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Malaria, Cerebral/pathology , Models, Immunological , Organ Specificity , Plasmodium/immunology , Plasmodium/pathogenicity , Retina/immunology , Retina/parasitology , Retina/pathology
8.
Int Immunol ; 30(3): 121-129, 2018 03 10.
Article in English | MEDLINE | ID: mdl-29300968

ABSTRACT

Individuals from malaria-endemic regions often acquire partial immunity after multiple repeated infections throughout their lives. This partial immunity prevents them from developing severe complications and they often remain asymptomatic with a persistent, low parasite density in the blood, and therefore the necessity for treatment is neglected. These patients with chronic, asymptomatic malaria serve as a reservoir for Plasmodium parasite transmission, becoming a major obstacle for eradication efforts. The constant exposure to malaria infection may have benefits in the short term by conferring protection from acute, severe malaria; however, it may cause substantially more harm in the long term. Rather than the parasite burden itself, the complications induced by the dysregulated immune responses and the tissue damage done by the parasites and their products can cause chronic and irreversible suffering. Furthermore, the complete clearance of parasites in the body may not lead to complete recovery from the disease as complications can still persist. The fact that there are chronic pathologies caused by malaria that mostly remain obscure and have the potential to cause a serious burden has recently been gaining attention. Here, we present and discuss the evidence of unforeseen pathologies and the risks associated with malaria.


Subject(s)
Malaria/immunology , Malaria/pathology , Plasmodium/immunology , Plasmodium/pathogenicity , Animals , Humans , Malaria/parasitology
9.
Vaccine ; 34(18): 2055-61, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26976665

ABSTRACT

Although adjuvants are a "must-have" component of successful vaccines, there are very few adjuvants licensed for use in humans, there is therefore an urgent need to develop new and safer adjuvants. Synthetic hemozoin (sHZ), a chemical analog of hemozoin which is produced by the malaria parasite, exhibits a potent adjuvant effect which enhances antigen-specific immune responses to vaccines. The potency of sHZ adjuvanticity is not limited to malaria specific vaccines, it has also been demonstrated to be effective in influenza and dog allergy models. While the synthesis of uniformly sized sHZ with consistent characteristics has proven difficult, we have recently successfully optimized the manufacture of sHZ product with an optimal adjuvant effect. Here, we summarize recent developments on the adjuvant properties of optimized sHZ adjuvant, including its good laboratory practice (GLP) non-clinical safety profile in animals. These studies ensure the safety of optimized sHZ product to be readily used as vaccine adjuvant beforehand in veterinary medicine.


Subject(s)
Adjuvants, Immunologic/chemistry , Hemeproteins/chemistry , Adjuvants, Immunologic/chemical synthesis , Animals , Hemeproteins/chemical synthesis , Humans , Influenza Vaccines/chemistry , Malaria Vaccines/chemistry , Plasmodium/chemistry , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...